Stochastic Optimization of Gas Networks

Nai-Yuan Chiang¹ Victor M Zavala¹

 $^1\mbox{Mathematics}$ and Computer Science, Argonne National Laboratory

April 01 2014

Motivation

U.S. Gas Transmission System

- How to exploit mutiple problem embedded structure?
- Tools:

Structure Exploiting Parallel Interior-Point Solver for NLP

Outline

Introduction

PIPS-NLP

Gas Network

Interior Point Methods (IPM)

Nonlinear Program

min
$$\mathbf{f}(x)$$
 s.t. $\mathbf{c}(x) = 0$ (NLP) $x \ge 0$

KKT Conditions

$$\nabla \mathbf{f}(x) - \nabla \mathbf{c}(x)\lambda - s = 0
\nabla \mathbf{c}^{\top} x = 0
XSe = 0
x, s \ge 0$$
(KKT)

$$X = \operatorname{diag}(x), S = \operatorname{diag}(s)$$

Interior Point Methods (IPM)

Barrier Problem

$$\min \mathbf{f}(x) - \mu \sum_{i} \ln x_{i} \quad \text{s.t.} \quad \mathbf{c}(x) = 0 \\ x \geq 0$$
 (NLP_{\mu})

KKT Conditions

$$\nabla \mathbf{f}(x) - \nabla \mathbf{c}(x)\lambda - s = 0
\nabla \mathbf{c}^{\top} x = 0
XSe = \mu e
x, s \ge 0$$
(KKT_{\(\mu\)})

 $X = \operatorname{diag}(x), S = \operatorname{diag}(s)$

- Introduce logarithmic barriers for $x \ge 0$
- For $\mu \to 0$ solution of (NLP $_{\mu}$) converges to solution of (NLP)
- System (KKT_μ) can be solved by Newton's Method

Newton-Step in IPM

Newton-Step: Full System

$$\begin{bmatrix} H & \mathcal{A}^{\top} & -I \\ \mathcal{A} & 0 & 0 \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = - \begin{bmatrix} \nabla f + \mathcal{A}^{\top} y - z \\ c(x) \\ XZe - \mu e \end{bmatrix}$$

where A is the constraint Jacobian, and H is the Hessian of the Lagrangian function. $\Theta = X^{-1}S$, X = diag(x), S = diag(s).

Newton-Step: Augmented System(IPM) $\Phi d = b$

$$\left[\begin{array}{cc} H + \Theta & \mathcal{A}^{\top} \\ \mathcal{A} & 0 \end{array}\right] \left[\begin{array}{c} \Delta x \\ \Delta y \end{array}\right] = - \left[\begin{array}{c} \nabla \phi_{\mu} + \mathcal{A}^{\top} y \\ c(x) \end{array}\right]$$

- Augmented system is sparse and symmetric.
- The structure of Newton's system does not change between IPM iterations.

Parallel Linear Algebra for IPM

Newton-Step: Augmented System(IPM)

$$\begin{bmatrix} W & \mathcal{A}^{\top} \\ \mathcal{A} & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} b_x \\ b_y \end{bmatrix}, W = H + \Theta$$

For a structured problem, if:

Structures of A, W and Φ :

Structures of A, W and Φ :

Bordered block-diagonal structure in Augmented System!

Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix

$$\underbrace{\begin{pmatrix} \Phi_1 & B_1^\top \\ & \ddots & \vdots \\ & \Phi_n B_n^\top \\ B_1 \cdots B_n & \Phi_0 \end{pmatrix}}_{\mathbf{\Phi}} \underbrace{\begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_0 \end{pmatrix}}_{\mathbf{d}} = \underbrace{\begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \\ \mathbf{b}_0 \end{pmatrix}}_{\mathbf{b}}$$

Solution of Block-system by Schur-complement

The solution to $\Phi x = \mathbf{b}$ is

$$x_0 = C^{-1}\mathbf{b}_0, \quad \mathbf{b}_0 = b_0 - \sum_i B_i \Phi_i^{-1} \mathbf{b}_i$$

 $x_i = \Phi_i^{-1} (\mathbf{b}_i - B_i^{\top} x_0), \quad i = 1, ..., n$

where C is the Schur-complement

$$C = \Phi_0 - \sum_{i=1}^n B_i \Phi_i^{-1} B_i^{\top}$$

 \Rightarrow only need to factor Φ_i , not Φ

Paraller Linear Algebra for the Structured Problem

Parallel IPM Implementation: For LP and QP

- OOPS: Jacek Gondzio and Andreas Grothey: Exploiting structure in parallel implementation of interior point methods for optimization.
- PIPS: Cosmin G. Petra and Mihai Anitescu: A preconditioning technique for Schur complement systems arising in stochastic optimization.

Now, we have PIPS-NLP for NLP!

PIPS-NLP

PIPS-NLP

PIPS-NLP is parallel nonliear IPM solver, based on PIPS for LP/QP.

Structure comes from (but not limited to)

- Stochastic Programming (scenarios)
- Problem Characteristics (PDE constraints)
- Network (partitions)
- Nested structure

Easy access:

- AMPL-interface
- Pyomo-interface

Global Convergence of the Algorithm

 NLP needs more work to ensure global convergence: filter technique (IPOPT¹), which requires inertia (number of positive and negative eigenvalue).

Structured Problem: Inertia Detection may be hard.

- $Inertia(\Phi) = Inertia(C) + \sum_{i} Inertia(\Phi_{i})$ Not Clear How to Do it (Central vs. Block-Based)
- Schur Complement is Large or Indefinite

¹Andreas Wächter and Lorenz T. Biegler. "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming". In: *Math. Program.* 106.1, Ser. A (2006), pp. 25–57. ISSN: 0025-5610.

Global Convergence of the Algorithm

Cases Where Inertia Detection is Difficult (If Not Impossible):

- Full System or Individual Blocks are Solved Using Iterative Schemes, e.g., multi-grid
- Numerically unstable on large-scale prob. (Some linear system solvers can give us inertia infomation, e.g. MA57, but its pivot tolerence plays a very important role.)
- Reduced Solver is Applied.
- Nested Structure.

Line Search with Filter

Inertia Correction: Rigorous Detection

- Check if matrix $\Phi = \begin{bmatrix} W & \mathcal{A}^{\top} \\ \mathcal{A} & 0 \end{bmatrix}$ has correct inertia. (MA57 or Pardiso)
- Increase the regularization term δ in $\Phi_{\delta} = \begin{bmatrix} W + \delta I & \mathcal{A}^{\top} \\ \mathcal{A} & 0 \end{bmatrix}$, until its inertia is correct.
- Solve system $\Phi_{\delta}d = b$.

dWd test: Relaxed Detection

- Check if $d^{\top}Wd$ has sufficient curvature for global convergence:
 - $\mathbf{d}^{\mathsf{T}} \mathbf{W} \mathbf{d} \geq \theta \mathbf{d}^{\mathsf{T}} \mathbf{d}$, where θ is a constant decreasing by μ .
- Increase regularization 'only' for the iteration whose $d^{\top}(W + \delta I)d < \theta d^{\top}d$.

Relaxed Curvature test

Pros and Cons of Relaxed Detection

- Pros:
 - Can accept decent direction d even if current inertia is wrong. Global convergence is also guaranteeded. Re-factorization is expensive! > 90% time of each Iter!
- Cons:
 Cannot guarantee second order optimality condition, but neither does inertia correction.

In practice?

Relaxed Curvature test

Pros and Cons of Relaxed Detection

- Pros:
 - Can accept decent direction d even if current inertia is wrong. Global convergence is also guaranteeded. Re-factorization is expensive! > 90% time of each Iter!
- Cons:
 Cannot guarantee second order optimality condition, but neither does inertia correction.

In practice?

- CUTEr test problems.
- Energy application.

CUTEr Experiments: (iteration)

CUTEr Experiments : (factorization)

Application.:

Problem	Domain	Algorithm	Objective	lter	Fact
building_det	Buildings	d⊺Wd	1.74×10^{3}	127	161
		$LDL^{ op}$	1.74×10^{3}	180	341
building_stoch_A	Buildings	$d^{\top}Wd$	1.89×10^{3}	167	181
		$LDL^{ op}$	1.89×10^{3}	170	270
building_stoch_B	Buildings	$d^{\top}Wd$	1.95×10^{3}	319	417
		$LDL^{ op}$	$1.95{ imes}10^{3}$	170	270
IEEE_162cart	Power Grid	d ¹ Wd	1.64×10^{0}	23	23
		$LDL^{ op}$	1.64×10^{0}	104	330
stochPDEgas_A	Gas Network	d ¹ Wd	1.73×10^{2}	35	35
		$LDL^{ op}$	1.73×10^{2}	34	35

Stochastic Gas Networks: Stochastic Structure + PDE Structure

Line-Pack (Storage) Management

PDE Gas Model

Inlet & Outlet Supply & Demand Pipe Flows Flows	
$0 = \sum_{\ell \in \mathcal{L}_n^{ln}} f_{\ell,\ell}^{in}(\omega) - \sum_{\ell \in \mathcal{L}_n^{out}} f_{\ell,\ell}^{out}(\omega) + \sum_{i \in \mathcal{S}_n} s_{i,t}(\omega) - \sum_{j \in \mathcal{D}_n} d_{j,t}(\omega), \ n \in \mathcal{N}, t \in \overline{\mathcal{T}}, \omega \in \Omega$	Network
$\frac{p_{\ell,t+1,k}(\omega)-p_{\ell,t,k}(\omega)}{\Delta \tau} = -c_{1,\ell} \frac{f_{\ell,t+1,k+1}(\omega)-f_{\ell,t+1,k}(\omega)}{\Delta x_{\ell}}, \ \ell \in \mathcal{L}, t \in \bar{\mathcal{T}}^-, k \in \bar{\mathcal{X}}^-, \omega \in \Omega$	
$\frac{f_{\ell,t+1,k}(\omega) - f_{\ell,t,k}(\omega)}{\Delta \tau} = -c_{2,\ell} \frac{p_{\ell,t+1,k+1}(\omega) - p_{\ell,t+1,k}(\omega)}{\Delta x_{\ell}}$	Conservation &
$-c_{3,\ell} \frac{f_{\ell,t+1,k}(\omega) f_{\ell,t+1,k}(\omega) }{p_{\ell,t+1,k}(\omega)}, \ell \in \mathcal{L}, t \in \bar{\mathcal{T}}^-, k \in \bar{\mathcal{X}}^-, \omega \in \Omega$	Momentum
$ \text{Pipe Flows} f_{\ell,t,N_x}(\omega) = f_{\ell,t}^{out}(\omega), \ \ell \in \mathcal{L}, t \in \bar{\mathcal{T}}, \omega \in \Omega $	
$f_{\ell,t,1}(\omega) = f_{\ell,t}^{in}(\omega), \ \ell \in \mathcal{L}, t \in \bar{\mathcal{T}}, \omega \in \Omega$	Boundary
$p_{\ell,t,N_x}(\omega) = \theta_{rec(\ell),t}(\omega), \ \ell \in \mathcal{L}, t \in \bar{\mathcal{T}}, \omega \in \Omega$	Conditions
Pipe Pressures $p_{\ell,t,1}(\omega) = \theta_{snd(\ell),t}(\omega), \ \ell \in \mathcal{L}_p, t \in \bar{\mathcal{T}}, \omega \in \Omega$	
$p_{\ell,t,1}(\omega) = \theta_{snd(\ell),t}(\omega) + \Delta \theta_{\ell,t}(\omega), \ \ell \in \mathcal{L}_a, t \in \bar{\mathcal{T}}, \omega \in \Omega$	
$ \begin{array}{ll} \textbf{Compressor} & P_{\ell,t}(\omega) = c_4 f_{\ell,t}^{in}(\omega) \left(\left(\frac{\theta_{snd(\ell),t}(\omega) + \Delta \theta_{\ell,t}(\omega)}{\theta_{snd(\ell),t}(\omega)} \right)^{\beta} - 1 \right), \; \ell \in \mathcal{L}_a, t \in \overline{\mathcal{T}}, \omega \in \Omega \\ \end{array} $	Compressor Power

PDE Gas Model: Objective

Define Per Scenario Cost

$$\begin{split} & \textbf{Power} & \textbf{Demand Tracking} \\ \varphi(\omega) &= \sum_{t \in \mathcal{T}} \sum_{\ell \in \mathcal{L}_a} c_{e,t} P_{\ell,t}(\omega) \Delta \tau \\ &+ \sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{D}} c_d (d_{j,t}(\omega) - \bar{d}_{j,t}(\omega))^2 \Delta \tau \\ &+ \sum_{k \in \mathcal{X}} \sum_{\ell \in \mathcal{L}} c_T (p_{\ell,T,k}(\omega) - p_{\ell,1,k}(\omega))^2 \Delta x_\ell + \sum_{k \in \mathcal{X}} \sum_{\ell \in \mathcal{L}} c_T (f_{\ell,T,k}(\omega) - f_{\ell,1,k}(\omega))^2 \Delta x_\ell, \quad \omega \in \Omega. \end{split}$$

Objective Function

$$\Psi = (1 - \xi) \mathbb{E} \left[\varphi(\omega) \right] + \xi \text{CVaR} \left[\varphi(\omega) \right].$$

where,

$$\mathrm{CVaR}\left[\varphi(\omega)\right] = \min_{\nu} \left[\nu + \frac{1}{1-\sigma}\mathbb{E}\left[\varphi(\omega) - \nu\right]_{+}\right]$$

- · Soft Constraints to Enforce Demand Flows (Improves Flexibility)
- Terminal Constraints Critical (System Required to Return to Initial State)

PDE Gas Model: System Constraint

$$\theta_{sup(i),t}(\omega) = \bar{\theta}_i^{sup}, \ i \in \mathcal{S}, t \in \bar{\mathcal{T}}, \omega \in \Omega$$

$$\begin{split} \Delta\theta_{\ell,1}(\omega) &= \Delta\theta_{\ell}^0, \ \ell \in \mathcal{L}_a, \omega \in \Omega \\ 0 &= -c_{1,\ell} \frac{f_{\ell,1,k+1}(\omega) - f_{\ell,1,k}(\omega)}{\Delta x_{\ell}}, \ \ell \in \mathcal{L}, x \in \bar{\mathcal{R}}^-, \omega \in \Omega \\ 0 &= -c_{2,\ell} \frac{p_{\ell,1,k+1}(\omega) - p_{\ell,1,k}(\omega)}{\Delta x_{\ell}} - c_{3,\ell} \frac{f_{\ell,1,k}(\omega)|f_{\ell,1,k}(\omega)|}{n_{\ell,1,k}(\omega)}, \ \ell \in \mathcal{L}, x \in \bar{\mathcal{X}}^-, \omega \in \Omega. \end{split}$$

$$\begin{split} P_{\ell}^{L} &\leq P_{\ell,t}(\omega) \leq P_{\ell}^{U}, \ \ell \in \mathcal{L}_{a}, t \in \bar{\mathcal{T}}, \omega \in \Omega \\ \theta_{\ell}^{suc,L} &\leq \theta_{snd(\ell),t}(\omega) \leq \theta_{\ell}^{suc,U}, \ \ell \in \mathcal{L}_{a}, t \in \bar{\mathcal{T}}, \omega \in \Omega \\ \theta_{\ell}^{dis,L} &\leq \theta_{snd(\ell),t}(\omega) + \Delta \theta_{snd(\ell),t}(\omega) \leq \theta_{\ell}^{dis,U}, \ \ell \in \mathcal{L}_{a}, t \in \bar{\mathcal{T}}, \omega \in \Omega \\ \theta_{j}^{L} &\leq \theta_{dem(j),t}(\omega) \leq \theta_{j}^{dem,U}, \ j \in \mathcal{D}, t \in \bar{\mathcal{T}}, \omega \in \Omega. \end{split}$$

$$\Delta \theta_{\ell,t}(\omega) = \mathbb{E}\left[\Delta \theta_{\ell,t}(\omega)\right], \ \ell \in \mathcal{L}_a, t \in \{1..T^d\}, \omega \in \Omega \setminus \{1\}$$

Supply Pressures

Initial Conditions

Initial Conditions

Non-Anticipativity

Gas Network Problem: Stochastic Structure

Problem (1 Scenario) Problem with |C| + 1 Scenarios

Control variables are independent to scenarios.

Numerical Results: Scalability

n	Obj	Iters	Time(hh:mm:ss)	MPI Proc.
1,930,752	1.39×10^{2}	42	05:20:01	1
1,930,752	1.39×10^{2}	41	01:05:35	8
1,930,752	1.39×10^{2}	40	00:31:15	16
1,930,752	1.39×10^{2}	42	00:21:02	24
1,930,752	1.39×10^{2}	41	00:16:13	32
1,930,752	1.39×10^{2}	41	00:10:59	48
1,930,752	1.39×10^{2}	41	00:05:53	96
	1,930,752 1,930,752 1,930,752 1,930,752 1,930,752 1,930,752	$\begin{array}{cccc} 1,930,752 & 1.39 \times 10^2 \\ 1,930,752 & 1.39 \times 10^2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Gas Network Problem: PDE Structure

Newton-Step: "Augmented System(IPM)" for each scenario

$$\Phi_i = \left[egin{array}{cc} W_i & \mathcal{A}_i^{ op} \ \mathcal{A}_i & 0 \end{array}
ight], orall i \in S$$

where A_i contains PDE constraints.

Split A_i into $[A_x A_u]$ (ignore 'i'), where u is the contral variables and x is the state variables.

$$\Phi_{i}\mathbf{d}_{i} = \mathbf{b}_{i} \to \begin{bmatrix} W_{xx} & W_{xu} & \mathcal{A}_{x}^{\top} \\ W_{ux} & W_{uu} & \mathcal{A}_{u}^{\top} \\ \mathcal{A}_{x} & \mathcal{A}_{u} & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{x} \\ \mathbf{b}_{u} \\ \mathbf{b}_{\lambda} \end{bmatrix}$$

 A_X is square and invertible (but not symmetric)

 \rightarrow Do computation in the reduced space!

Reduced Space

Solve Problem in Reduced Space!

• Step.1: Solve following equation to get *u*:

$$(W_{uu} - W_{ux}A_x^{-1}A_u - A_u^{\top}A_x^{-\top}W_{xu} + A_u^{\top}A_x^{-\top}W_{xx}A_x^{-1}A_u)u$$

= $\mathbf{b}_u - A_u^{\top}A_x^{-\top}(\mathbf{b}_x - W_{xx}A_x^{-1}\mathbf{b}_{\lambda}) - W_{ux}A_x^{-1}\mathbf{b}_{\lambda}$

Step.2: Solve following equation to get x:

$$x = \mathcal{A}_{x}^{-1}(\mathbf{b}_{\lambda} - \mathcal{A}_{u}u)$$

• Step.3: Solve following equation to get λ :

$$\lambda = \mathcal{A}_{\mathsf{x}}^{-\top} (\mathbf{b}_{\mathsf{x}} - W_{\mathsf{x}\mathsf{x}} \mathsf{x} - W_{\mathsf{x}\mathsf{u}} \mathsf{u})$$

No LDL^{\top} of $\phi_i \to \mathcal{A}_{\mathsf{x}}$ is isolated $\to \mathcal{A}_{\mathsf{x}}^{-1}$ can be obtained by user defined algorithm.

Dense LU for reduced hessian (Lhs matrix in Step 1)

Numerical Results

No.Sce	n	Obj	Iters	Time(hh:mm:ss)	MPI Proc.
96	1,930,752	1.39×10^{2}	42	00:29:54	8
96	1,930,752	1.39×10^{2}	42	00:14:45	16
96	1,930,752	1.39×10^{2}	42	00:10:00	24
96	1,930,752	1.39×10^{2}	42	00:07:36	32
96	1,930,752	1.39×10^{2}	42	00:05:14	48
96	1,930,752	1.39×10^{2}	42	00:02:54	96

Table: Scalability: Reduced space (Umfpack is applied to do LU factorization and corresponding backsolve.)

No.Sce	n	Obj	Iters	Time(hh:mm:ss)	MPI Proc.	
96	1,930,752	1.39×10^{2}	42	01:13:16	8	
96	1,930,752	1.39×10^{2}	42	00:38:18	16	
96	1,930,752	1.39×10^{2}	42	00:24:55	24	
96	1,930,752	1.39×10^{2}	42	00:19:23	32	
96	1,930,752	1.39×10^{2}	42	00:12:42	48	
96	1,930,752	1.39×10^{2}	42	00:06:48	96	

Table: Scalability: Full space

Numerical Results

No.Sce	n	Obj	Iters	Time(hh:mm:ss)	MPI Proc.
200	3,917,328	1.20×10^{2}	55	00:27:16	20
200	3,917,328	1.20×10^{2}	55	00:14:16	40
200	3,917,328	1.20×10^{2}	55	00:06:01	100
200	3,917,328	1.20×10^{2}	55	00:03:14	200

Table: Scalability: Reduced space (Umfpack)

n	Obj	Iters	Time(hh:mm:ss)	MPI Proc.
3,917,328	1.20×10^{2}	55	01:01:33	20
3,917,328		55	00:31:11	40
3,917,328	1.20×10^{2}	54	00:12:36	100
3,917,328	1.20×10^{2}	55	00:06:38	200
	3,917,328 3,917,328	$3,917,328$ 1.20×10^2 $3,917,328$ 1.20×10^2 $3,917,328$ 1.20×10^2	$3,917,328$ 1.20×10^2 55 $3,917,328$ 1.20×10^2 55 $3,917,328$ 1.20×10^2 54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table: Scalability: Full space

AMPL Input

Generate NL file from AMPL:

```
# define suffixes:
suffix pipsNLP_DecisionVar_in, IN:
suffix pipsNLP_1stStageVar_in, IN;
param idx_1stVar;
param idx_decVar;
# assign suffixes for each scenario;
for k in 1..K_All do
    let idx_1stVar := 1:
    let idx\_decVar := 1;
    # define first stage variables
    for i in LINK.t in TIME: t < TDEC do
        let dp[j,j,t].pipsNLP_1stStageVar_in := idx_1stVar;
        let idx 1stVar := idx 1stVar + 1:
    end for
    # define contral variables in each scenario
    for i in LINK.t in TIME: t > TDEC do
        let dp[j,i,t].pipsNLP_DecisionVar_in := idx_decVar;
        let idx_decVar := idx_decVar + 1:
    end for
    # write nl file
    write ("bpdegas_paper_Dec" & k);
end for
```

Straightforward and 'no' additional time for ordering derivatives (<0.1s for gas model)

Conclusions

PIPS-NLP

- Parallel NLP solver.
- Accept multiple structure, e.g: PDE constraints + network constraints.
- Support AMPL/PYOMO input.
- Other applications: parameter estimation, general stochastic optimal contral problem, robust dessign and network partitioning.

Conclusions

PIPS-NLP

- Parallel NLP solver.
- Accept multiple structure, e.g: PDE constraints + network constraints.
- Support AMPL/PYOMO input.
- Other applications: parameter estimation, general stochastic optimal contral problem, robust dessign and network partitioning.

Future Work

 Exploit multi-stage stochastic structure and multi-grid multi-level algorithm for problems with PDE and network constraints.

Conclusions

• Thank you for your attention!